17 research outputs found

    Phase Decomposition upon Alteration of Radiation-Damaged Monazite-(Ce) from Moss, Ostfold, Norway

    Get PDF
    The internal textures of crystals of moderately radiation-damaged monazite-(Ce) from Moss, Norway, indicate heavy, secondary chemical alteration. In fact, the cm-sized specimens are no longer mono-mineral monazite but rather a composite consisting of monazite-(Ce) and apatite pervaded by several generations of fractures filled with sulphides and a phase rich in Th, Y, and Si. This composite is virtually a 'pseudomorph' after primary euhedral monazite crystals whose faces are still well preserved. The chemical alteration has resulted in major reworking and decomposition of the primary crystals, with potentially uncontrolled elemental changes, including extensive release of Th from the primary monazite and local redeposition of radionuclides in fracture fillings. This seems to question the general alteration-resistance of orthophosphate phases in a low-temperature, 'wet' environment, and hence their suitability as potential host ceramics for the long-term immobilisation of radioactive waste

    Evidence for fractional crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained in shock-melt veins

    No full text
    Peace River is one of the few shocked members of the L-chondrites clan that contains both high-pressure polymorphs of olivine, ringwoodite and wadsleyite, in diverse textures and settings in fragments entrained in shock-melt veins. Among these settings are complete olivine porphyritic chondrules. We encountered few squeezed and flattened olivine porphyritic chondrules entrained in shock-melt veins of this meteorite with novel textures and composition. The former chemically unzoned (Fa24–26) olivine porphyritic crystals are heavily flattened and display a concentric intergrowth with Mg-rich wadsleyite of a very narrow compositional range (Fa6–Fa10) in the core. Wadsleyite core is surrounded by a Mg-poor and chemically stark zoned ringwoodite (Fa28–Fa38) belt. The wadsleyite–ringwoodite interface denotes a compositional gap of up to 32 mol % fayalite. A transmission electron microscopy study of focused ion beam slices in both regions indicates that the wadsleyite core and ringwoodite belt consist of granoblastic-like intergrowth of polygonal crystallites of both ringwoodite and wadsleyite, with wadsleyite crystallites dominating in the core and ringwoodite crystallites dominating in the belt. Texture and compositions of both high-pressure polymorphs are strongly suggestive of formation by a fractional crystallization of the olivine melt of a narrow composition (Fa24–26), starting with Mg-rich wadsleyite followed by the Mg-poor ringwoodite from a shock-induced melt of olivine composition (Fa24–26). Our findings could erase the possibility of the resulting unrealistic time scales of the high-pressure regime reported recently from other shocked L-6 chondrites

    Timescales of shock processes in chondritic and martian meteorites

    No full text
    International audienceThe accretion of the terrestrial planets from asteroid collisions and the delivery to the Earth of martian and lunar meteorites has been modelled extensively 1,2. Meteorites that have experienced shock waves from such collisions can potentially be used to reveal the accretion process at different stages of evolution within the Solar System. Here we have determined the peak pressure experienced and the duration of impact in a chondrite and a martian meteorite, and have combined the data with impact scaling laws to infer the sizes of the impactors and the associated craters on the meteorite parent bodies. The duration of shock events is inferred from trace element distributions between coexisting high-pressure minerals in the shear melt veins of the meteorites. The shock duration and the associated sizes of the impactor are found to be much greater in the chondrite (~1 s and 5 km, respectively) than in the martian meteorite (~10 ms and 100 m). The latter result compares well with numerical modelling studies of cratering on Mars, and we suggest that martian meteorites with similar, recent ejection ages (105 to 107 years ago) 3 may have originated from the same few square kilometres on Mars

    Mesozoic sedimentary cover sequences of the Congo Basin in the Kasai region, Democratic Republic of Congo

    No full text
    The Congo Basin represents one of the largest and least studied continental sedimentary basins in the world. The stratigraphy of cover sequences across the basin is poorly resolved and a somewhat simple stratigraphy has generally been applied with gross subdivision of the Mesozoic-Cenozoic cover sequences into a number weakly correlated units. Although these subdivisions are useful for broad, regional-scale correlations, investigation of drill cores and outcrop in the shallow, southern Kasai part of the basin, from Tshikapa to Kabinda, reveals considerable facies, provenance and thickness variations, suggesting a more complex depositional and stratigraphic history than previously recognized. This study now permits the subdivision of the sedimentary cover in the Kasai portion of the Congo Basin into five distinct depositional sequences consisting of (1) P1: Permo-Carboniferous glacio-lacustrine deposits correlative to the Lukuga Group; (2) J1: Jurassic-age arid to semi-arid laminated shales and siltstones and aeolian sandstones, interpreted as ephemeral lake and sand dune sequences with interspersed loess deposits and rare fluvial channel sequences (considered part of the historic Lualaba-Lubilash Supergroup—the lacustrine facies likely correlates with the Stanleyville Group, DRC and the Continental Intercalar Group, Angola); (3) C1 & C2: Lower Cretaceous locally heavy mineral-rich fluvial sandstone deposits and variably present basal conglomerate (correlated to the Loia Group, DRC and the Calonda Formation, Angola); (4) C3 & C4: Upper Cretaceous conglomerates of alluvial fan origin that grade upward into laminated shales and siltstones or well-sorted and rounded, fined grained sandstones representative of a semi-arid to arid depositional setting dominated by ephemeral lakes and small aeolian dunes, (equated to the Kwango Group, DRC and Angola) and (5) T1: fluvial, aeolian and lacustrine sediments of Paleogene age (correlated with portions of the Kalahari Group). The results convincingly suggest that this part of the Congo Basin is more structurally complex than previously appreciated, with multiple fault-bounded basement highs and depocenters that strongly influenced regional sedimentation patterns. Prolonged and sporadic displacement appears to have taken place along these faults, leading to heavily bisected basin morphology with uneven thickness and depth distributions between sequences. The deposition of Cretaceous sequences was coeval with two episodes of kimberlite emplacement, the first at ~120–130 Ma in northern Angola, and the second at ~70–80 Ma in the DRC, with gravel horizons within the Cretaceous fluvial successions (C1 and C3) known for their alluvial diamond concentration. The models developed provide a regional context for evaluation of alluvial diamond source areas and prospectivity
    corecore